Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles
نویسندگان
چکیده
BACKGROUND Cationic polymers have been accepted as effective nonviral vectors for gene delivery with low immunogenicity unlike viral vectors. However, the lack of organ or cell specificity sometimes hampers their application and the modification of polymeric vectors has also shown successful improvements in achieving cell-specific targeting delivery and in promoting intracellular gene transfer efficiency. METHODS A folic acid-conjugated stearic acid-grafted chitosan (FA-CS-SA) micelle, synthesized by a 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-coupling reaction, was designed for specific receptor-mediated gene delivery. RESULTS Due to the cationic properties of chitosan, the micelles could compact the plasmid DNA (pDNA) to form micelle/pDNA complexes nanoparticles. The particle size and zeta potential of the FA-CS-SA/pDNA complexes with different N/P ratios were 100-200 nm and -20 to -10 mV, respectively. The DNase I protection assay indicated that the complexes can efficiently protect condensed DNA from enzymatic degradation by DNase I. A cytotoxicity study indicated that the micelles exhibited less toxicity in comparison with Lipofectamine™ 2000. Using SKOV3 and A549 as model tumor cells, the cellular uptake of micelles was investigated. CONCLUSION It was found that cellular uptake of FA-CS-SA in SKOV3 cells with higher folate receptor expression was faster than that in A549 cells with a short incubation time. Luciferase assay and green fluorescent protein detection were used to confirm that FA-CS-SA could be an effective gene vector. Transfection efficiency of the FA-CS-SA/pDNA complexes in SKOV3 cells was enhanced up to 2.3-fold compared with that of the CS-SA/pDNA complexes. However, there was no significant difference between the transfection efficiencies of the two complexes in A549 cells. Importantly, the transfection efficiency of FA-CS-SA/pDNA decreased with free FA pretreatment in SKOV3 cells. It was concluded that the increase in transfection efficiency of the FA-CS-SA/pDNA complexes was attributed to folate receptor-mediated endocytosis.
منابع مشابه
Efficient gene delivery system mediated by cis-aconitate-modified chitosan-g-stearic acid micelles
Cis-aconitate-modified chitosan-g-stearic acid (CA-CSO-SA) micelles were synthesized in this study to improve the gene transfection efficiency of chitosan-g-stearic acid (CSO-SA). The CA-CSO-SA micelles had a similar size, critical micelle concentration, and morphology, but their zeta potential and cytotoxicity were reduced compared with CSO-SA micelles. After modification with cis-aconitate, t...
متن کاملBrain-targeting study of stearic acid–grafted chitosan micelle drug-delivery system
PURPOSE Therapy for central nervous system disease is mainly restricted by the blood-brain barrier. A drug-delivery system is an effective approach to overcome this barrier. In this research, the potential of polymeric micelles for brain-targeting drug delivery was studied. METHODS Stearic acid-grafted chitosan (CS-SA) was synthesized by hydrophobic modification of chitosan with stearic acid....
متن کاملFolate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan–folic acid micelles
BACKGROUND A critical disadvantage for successful chemotherapy with paclitaxel (PTX) is its nontargeting nature to cancer cells. Folic acid has been employed as a targeting ligand of various anticancer agents to increase their cellular uptake within target cells since the folate receptor is overexpressed on the surface of such tumor cells. In this study, a novel biodegradable deoxycholic acid-O...
متن کاملSynthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery.
Poor water solubility and low transfection efficiency of chitosan are major drawbacks for its use as a gene delivery carrier. PEGylation can increase its solubility, and folate conjugation may improve gene transfection efficiency due to promoted uptake of folate receptor-bearing tumor cells. The aim of this study was to synthesize and characterize folate-poly(ethylene glycol)-grafted chitosan (...
متن کاملRGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells
BACKGROUND Solid tumors need new blood vessels to feed and nourish them as well as to allow tumor cells to escape into the circulation and lodge in other organs, which is termed "angiogenesis." Some tumor cells within solid tumors can overexpress integrins α(v)β(3) and α(v)β(5), which can specifically recognize the peptide motif Arg-Gly-Asp (RGD). Thus, the targeting of RGD-modified micelles to...
متن کامل